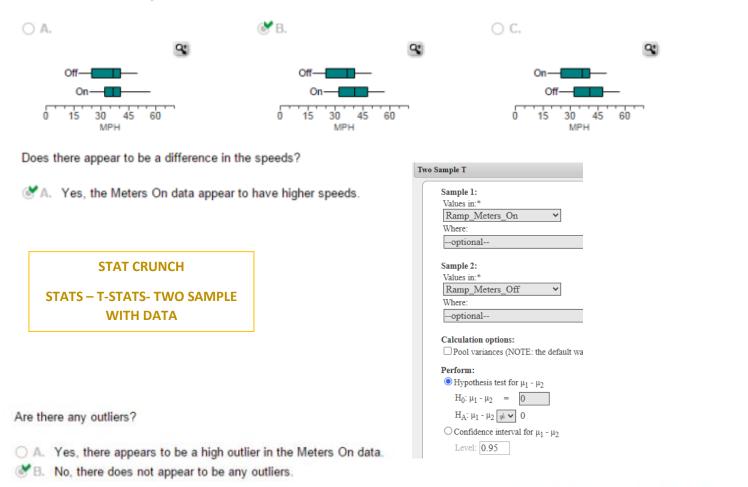
11.3 Inference for Two Means: Independent Samples

MATH 241 THOMPSON


1)	Assume that both populations are normally distr (a) Test whether $\mu_1 \neq \mu_2$ at the $\alpha = 0.01$ level of for the given sample data. (b) Construct a 99% confidence interval about μ	significance 1 ^{-μ} 2·	x	Population 1 19 15.6 4.6	Population 2 19 13.8 4	2	µ1 ≠µ2 always check pool variance Otherwise uncheck it
	 C. H₀:µ₁ = µ₂ H₁:µ₁ ≠ µ₂ D. H₀:µ₁ ≠ µ₂ H₁:µ₁ > µ₂ Detemine the P-value for this hypothesis test. P = .206 (Round to three decimal places as new Should the null hypothesis be rejected? A. Reject H₀, there is not sufficient evidence means. 	STAT STAT S – T-STA WITH S eded.)	CRUNCH TS- TWC SUMMAI	SAMPLE	have different	Sam Sam Sam Sam Sam Sam Sam Sam Calco @ Po Perfo @ Hy H	ple T Summaryple 1:ple mean:15.6ple std. dev.:4.6ple size:19ple e mean:13.8ple std. dev.:4ple size:19ulation options:ol variancesporm:ypothesis test for $\mu_1 - \mu_2$ $\rho: \mu_1 - \mu_2 = 0$ $\Delta: \mu_1 - \mu_2 \neq \mathbf{v}$ 0
2)	 B. Do not reject H₀, there is not sufficient evidifferent means. Use the given statistics to complete parts (a) and (normally distributed. (a) Test whether μ₁ > μ₂ at the α = 0.10 level of sig. (b) Construct a 95% confidence interval about μ₁ - (a) Identify the null and alternative hypotheses for the function of the second s	o). Assume t nificance for μ ₂ .	hat the po	pulations are		28 48.5 5.6	1 Population 2 19 46.8 10.7
	$\bigcirc A. \ H_0: \mu_1 > \mu_2 \\ H_1: \mu_1 = \mu_2 \\ \bigcirc B.$	$H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 < \mu_2 \\ H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2$	STATS –		O SAMPLE	μ ₂ μ ₂	Sample T Summary Sample 1: Sample mean: 48.5 Sample std. dev.: 5.6 Sample size: 28 Sample nean: 46.8 Sample size: 10.7 Sample size: 19 Calculation options:
	.265 (Round to three decimal places as needed.) State the conclusion for this hypothesis test. Do not reject H_0 . There is not sufficient evic conclude that $\mu_1 > \mu_2$. If P value is <			10 level of sig	gnificance to		Pool variances Perform: • Hypothesis test for $\mu_1 - \mu_2$ $H_0: \mu_1 - \mu_2 = 0$ $H_A: \mu_1 - \mu_2 > \bullet 0$

3) Ramp metering is a traffic engineering idea that requires cars entering a freeway to stop for a certain period of time before joining the traffic flow. The theory is that ramp metering controls the number of cars on the freeway and the number of cars accessing the freeway, resulting in a freer flow of cars, which ultimately results in faster travel times. To test whether ramp metering is effective in reducing travel times, engineers conducted an experiment in which a section of freeway had ramp meters installed on the on-ramps. The response variable for the study was speed of the vehicles. A random sample of 15 cars on the highway for a Monday at 6 p.m. with the ramp meters on and a second random sample of 15 cars on a different Monday at 6 p.m. with the meters off resulted in the following speeds (in miles per hour).

Click the icon to view the data sets.

GRAPH - BOX PLOT click Draw boxes horizontally

(a) Draw side-by-side boxplots of each data set. Does there appear to be a difference in the speeds? Are there any outliers? Choose the correct box plot below.

(b) Are the ramp meters effective in maintaining a higher speed on the freeway? Use the α = 0.1 level of significance. State the null and alternative hypotheses. Choose the correct answer below.

$\bigcirc A. H_0: \mu_{on} \neq \mu_{off}$	\bigcirc B. H ₀ : $\mu_{on} < \mu_{off}$
$H_1:\mu_{on} > \mu_{off}$	$H_1:\mu_{on} > \mu_{off}$
\bigcirc C. H ₀ : $\mu_{on} = \mu_{off}$	$\bigotimes D$. $H_0:\mu_{on} = \mu_{off}$
H ₁ :µ _{on} ≠ µ _{off}	$H_1:\mu_{on} > \mu_{off}$

Determine the P-value for this test.

P-value = .037 (Round to three decimal places as needed.)

Choose the correct conclusion.

- O A. Do not reject H₀. There is not sufficient evidence at the α = 0.1 level of significance that the ramp meters are effective in maintaining higher speed on the freeway.
- B. Reject H₀. There is not sufficient evidence at the α = 0.1 level of significance that the ramp meters are effective in maintaining higher speed on the freeway.
- Of C. Reject H₀. There is sufficient evidence at the α = 0.1 level of significance that the ramp meters are effective in maintaining higher speed on the freeway.

A researcher with the Department of Education followed a cohort of students who graduated from high school in a certain year, monitoring the progress the students made toward completing a bachelor's degree. One aspect of his research was to determine whether students who first attended community college took longer to attain a bachelor's degree than those who immediately attended and remained at a 4-year institution. The data in the table attached below summarize the results of his study. Complete parts a) through e) below.

Click the icon to view the sample data.

C. The response variable is the time to graduate. The explanatory variable is the use of community college or not.

b) Explain why this study can be analyzed using inference of two sample means. Determine what qualifications are met to perform the hypothesis test about the difference between two means. Select all that apply.

- A. The population is given to be normally distributed.
- B. The samples are independent.
- C. The samples can be reasonably assumed to be random.
- D. The sample sizes are not more than 5% of the population.
- E. The sample sizes are large (both greater than or equal to 30).

c) Does the evidence suggest that community college transfer students take longer to attain a bachelor's degree? Use an α = 0.01 level of significance. Perform a hypothesis test. Determine the null and alternative hypotheses.

- A. H₀: µ_{community college} = µ_{no transfer}, H₁: µ_{community college} < µ_{no transfer}
- B. H₀: µ_{community college} > µ_{no transfer}, H₁: µ_{community college} < µ_{no transfer}
- C. H₀: µ_{community college} < µ_{no} transfer, H₁: µ_{community college} > µ_{no} transfer
- O. H₀: μ_{community} college = μ_{no} transfer, H₁: μ_{community} college > μ_{no} transfer

Determine the test statistic.

t = 12.75 (Round to two decimal places as needed.)

Determine the P-value.

P-value = .000 (Round to three decimal places as needed.)

Should the hypothesis be rejected?

Reject the null hypothesis. The evidence does suggest that community college transfer students take longer to attain a bachelor's degree at the α = 0.01 level of significance.

d) Construct a 90% confidence interval for μ_{community college} - μ_{no transfer} to approximate the mean additional time it takes to complete a bachelor's degree if you begin in community college.

The confidence interval is the range from .879 to 1.141. (Round to three decimal places as needed.)

e) Do the results of parts c) and d) imply that community college causes you to take extra time to earn a bachelor's degree?

💕 No

) Yes

STAT CRUNCH

STATS – T-STATS- TWO SAMPLE WITH DATA

4)

5) Do women feel differently from men when it comes to tax rates? One question on a survey of randomly selected adults asked, percent of income do you believe individuals should pay in income tax?" Complete parts a) through c).

Click the icon to view the survey results.

a) Draw side-by-side boxplots of tax rates by gender. Choose the correct graph below.

Does there appear to be a difference in the income tax rates between genders?

- O A. No but the maximum income tax rate for males is higher than the maximum income tax rate for females.
- O B. No because the income tax rate is about the same for males and females.
- C. Yes because the income tax rate for females appears to have a higher median than the income tax rate for males.
- O D. Yes because the income tax rate for males appears to have a higher median than the income tax rate for females.

b) Explain why a hypothesis test may be used to test whether the mean tax rates for the two genders differ.

Select all that apply.

- A. Each sample size is small relative to the size of its population.
- B. Each sample is obtained independently of the other.
- C. Each sample is a simple random sample.
- D. Each sample size is large.
- E. Each sample has the same sample size.

c) Test whether the mean tax rate for females differs from that of males at the α = 0.01 level of significance.

Determine the null and alternative hypotheses for this test. Let μ_M represent the mean income tax rate for males and let μ_F represent the mean income tax rate for females.

H₀: μ_M = μ_F versus H₁: μ_M ≠ μ_F

Find t₀, the test statistic for this hypothesis test.

t₀ = -0.86' (Round to two decimal places as needed.)

Determine the P-value for this test.

P-value = .392 (Round to three decimal places as needed.)

State the appropriate conclusion. Choose the correct answer below.

STAT CRUNCH

STATS – T-STATS- TWO SAMPLE WITH DATA

D. Do not reject H₀. There is not sufficient evidence at the level of significance to conclude that the mean income tax rate for males is different from the mean income tax rate for females.

6) A random sample of 40 adults with no children under the age of 18 years results in a mean daily leisure time of 5.47 hours, with a standard deviation of 2.28 hours. A random sample of 40 adults with children under the age of 18 results in a mean daily leisure time of 4.43 hours, with a standard deviation of 1.96 hours. Construct and interpret a 90% confidence interval for the mean difference in leisure time between adults with no children and adults with children (μ₁ - μ₂).

Let μ_1 represent the mean leisure hours of adults with no children under the age of 18 and μ_2 represent the mean leisure hours of adults with children under the age of 18.

The 90% confidence interval for $(\mu_1 - \mu_2)$ is the range from .25 hours to 1.83 hours. (Round to two decimal places as needed.)

What is the interpretation of this confidence interval?

A. There is 90% confidence that the difference of the means is in the interval. Conclude that there is a significant difference in the number of leisure hours.

Check the P value

STAT CRUNCH

STATS – T-STATS- TWO SAMPLE WITH DATA

nary
5.47
.: 2.28
40
4.43
.: 1.96
40
ions:
st for µ1 - µ2
= 0
⊧ ▼ 0
terval for μ ₁ - μ ₂
1

7 A physical therapist wanted to know whether the mean step pulse of men Two sample T for Men vs Women was less than the mean step pulse of women. She randomly selected 55 men and 76 women to participate in the study. Each subject was required to step up and down a 6-inch platform. The pulse of each subject was then recorded. The following results were obtained.

		N	Mean	StDev	SE Mean	
	Men	55	112.5	11.5	1.6	
n	Women	76	118.6	14.3	1.6	
	95% CI for m	iu Men	i – mu Wor	men		
	(-10.60, -1	.60)				
	T-Test mu M	en = m	u Women	(vs <)		
	T = - 2.70 P	= 0.00	39 DF = 12	27		

(a) State the null and alternative hypotheses. Which of the following is correct?

- $\bigotimes^{*} A$. $H_0: \mu_1 = \mu_2; H_a: \mu_1 < \mu_2$
- \bigcirc B. H₀: $\mu_1 = \mu_2$; H_a: $\mu_1 \neq \mu_2$
- \bigcirc C. $H_0: \mu_1 = \mu_2; H_a: \mu_1 > \mu_2$

(b) Identify the P-value and state the researcher's conclusion if the level of significance was $\alpha = 0.01$. What is the P-value?

P-value = .0039

State the researcher's conclusion. Which of the following is correct?

O. Reject H₀, there is sufficient evidence to conclude that the mean step pulse of men was less than the mean step pulse of women

(c) What is the 95% confidence interval for the mean difference in pulse rates of men versus women?

The lower bound is - 10.62. The upper bound is - 1.38. (Round to two decimal places as needed.)

Interpret this result.

- A. 95% percent of the time the means are in the confidence interval.
- B. We are 95% confident that the mean difference is in the confidence interval.
- C. 95% percent of the time the mean difference is in the confidence interval.
- D. We are 95% confident that the means are in the confidence interval.

STAT CRUNCH

STATS – T-STATS- TWO SAMPLE WITH DATA **Confidence 95%**

8)	A professor wanted to determine whether an online homework system improved scores on a final exam. In the fall semester, he taught a class using the online homework system (which meant students did their homework online and received instant feedback about their answers along with helpful guidance). In the spring semester, he taught a class without the homework system (which meant students were responsible for doing their homework the old-fashioned way – paper and pencil). The professor made sure to teach the two courses identically (same text, syllabus, tests, meeting time, meeting location, and so on). The table summarizes the results of the two classes on their final exam. Complete parts (a) through (e) below.
	(a) What type of experimental design is this?

 A. Completely randomized design B. Randomized blocked design C. Prospective study D. Retrospective study 	
(b) What is the response variable?	
Homework system	⊖ Syllabus
◯ Test	 Weather
⊖ Text	C Location
🕙 Final exam scores	O Teacher
What are the treatments in the study? Select all that apply.	
Test	Homework system
Text	Weather
Final exam scores	Syllabus
Teacher	Location
(c) What factors are controlled in the experiment? Select all that apply	
Text	Homework system

*	Text		Homework syste
	Final exam scores	*	Syllabus
1	Location	1	Teacher
1	Test		Weather

(d) In many experiments, the researcher will recruit volunteers and randomly assign the individuals to a treatment group. In what regard was this done for this experiment?

🕑 A.	The assumption is	that the students	"randomly"	enrolled in the course
------	-------------------	-------------------	------------	------------------------

- O B. The assumption is that the students were selected for each course.
- C. The assumption is that the students knew about the experiment and choose to be in one of the two classes.
- O D. No assumptions were made for this experiment.

(e) Did the students perform better on the final exam in the fall semester? Use an α = 0.10 level of significance. State the null and alternative hypotheses.

0 A .	H ₀ : μ _{fall} = μ _{spring}
	H ₁ : μ _{fall} < μ _{spring}
⊖ С.	$H_0: \mu_{fall} = \mu_{spring}$
	H ₁ :μ _{fall} ≠μ _{spring}

Determine the P-value for this hypothesis test.

P-value = .006 (Round to three decimal places as needed.)

STAT CRUNCH STATS – T-STATS- TWO SAMPLE

WITH SUMMARY

Choose the correct conclusion.

O A. Do not reject H₀. There is not sufficient evidence that the online homework is effective in raising final exam scores.

♂B. Reject H₀. There is sufficient evidence that the online homework is effective in raising final exam scores.

EXTRA PROBLEMS:

A study was conducted to determine the effectiveness of a certain treatment. A group of 102 patients were randomly divided into an experimental group and a control group. The table shows the result for their net improvement. Let the experimental group be group 1 and the control group be group 2.

Click the icon to view the net improvement results.

(a) Test whether the experimental group experienced a larger mean improvement than the control group at the α = 0.05 level of significance.

State the null and alternative hypotheses. Choose the correct answer below.

 \bigcirc A. H₀: $\mu_1 = \mu_2$ and H₁: $\mu_1 < \mu_2$

 $\bigotimes B$. H₀: $\mu_1 = \mu_2$ and H₁: $\mu_1 > \mu_2$

 \bigcirc C. H₀: $\mu_1 = \mu_2$ and H₁: $\mu_1 \neq \mu_2$

Determine the P-value for this hypothesis test.

P-value = .000 (Round to three decimal places as needed.)

Choose the correct conclusion.

- \bigcirc A. Reject H₀. There is not sufficient evidence at the α = 0.05 level of significance to say that the experimental g experienced a larger mean improvement than the control group.
- \bigcirc B. Do not reject H₀. There is not sufficient evidence at the α = 0.05 level of significance to say that the experime experienced a larger mean improvement than the control group.
- 🥙 C. Reject H₀. There is sufficient evidence at the α = 0.05 level of significance to say that the experimental group a larger mean improvement than the control group.
- \bigcirc D. Do not reject H₀. There is sufficient evidence at the α = 0.05 level of significance to say that the experimenta experienced a larger mean improvement than the control group.

(b) Construct a 90% confidence interval about μ₁ - μ₂ and interpret the results.

What is the interpretation of this confidence interval?

- O A. There is a 90% probability that the difference of the means is in the interval.
- B. We are 90% confident that the difference of the means is in the interval.

Two Sample T Summary

Sample 1:	
Sample mean:	15.5
Sample std. dev.:	7.8
Sample size:	61
Sample 2:	
Sample mean:	9.1
Sample std. dev.:	4.8
Sample size:	41
Calculation optio	ins:
Perform: O Hypothesis test	for µ1 - µ2
H ₀ : µ ₁ - µ ₂ =	0
H _A : μ ₁ - μ ₂ >	• 0

Confide	ence int	erval	for	μ_1	-	μ ₂
Level:	0.90					

One question on a survey of adults asked, "What do you think is the ideal number of children for a family to have?" Do the results of the survey suggest there is a difference between males and females in regard to this question? Use the $\alpha = 0.01$ level of significance.

Identify the null and alternative hypotheses for this test. Let μ_1 represent the population ideal number of children for adult males and μ_2 the population ideal number of children for adult females

○ A.
$$H_0: \mu_1 < \mu_2$$

 $H_1: \mu_1 = \mu_2$
③ D. $H_0: \mu_1 = \mu_2$
 $H_1: \mu_1 \neq \mu_2$

Two Comple T

T-STATS – TWO SAMPLE – WITH DATA

Then Values in: **RESPONSE**

Where: Double click Gender then bottom for Values: choose Male then do it again for Female

Expression		
Gender = "Male"		
Gender - Mare		
7 8 9 +	Columns:	Functions:
4 5 6 -	Gender	abs
	Response	acos
1 2 3 *		arccos
0 . () /		arcsin
		arctan
<u>^ = != !</u>		asin
> >= < <=		atan atan2
and or Clr		between
		ceil
		comb
	Add Column	Add Functi
	nuu conum	
Values: Male		▼ ,
History:		•

ale t	hen do it a	gain for F	emale			'3.8
		-				.0.5
	-			Com	_	.0.3
Expression				Sam	pie size.	.5
Gend	ler="Female"			Sam	ple 2:	
7	8 9 +	Columns:	Functions	Sam	ple mean:	5.5
4	5 6 -	Gender Response	abs acos	Sam	ple std. dev.: 1	.2
1	2 3 *	Response	arccos	Sam	ple size: 2	26
0	\cdot 0 /		arcsin			
^	= != !		arctan asin		ulation option	S
>	>= < <=		atan	■ P0	ol variances	
and	or Clr	1	atan2 between	Perf		
			ceil		pothesis test f	
			comb			
		Add Column	Add Fu		_A : μ ₁ - μ ₂ > ▼	0
	es: Female		*	Add		
Histo	ory:		•	Set		
		?	Cancel C	Okay		
		?	11 11		Data Set	
StatCr	unch Applet	? s Edit D	11 11	_ab I	Data Set aph Hell)
StatCr	unch Applet	? Edit D	MyStatl	_ab I)
StatCr Row	Gender F		MyStatl Data Stat	_ab I		var6
			MyStatl Data Stat	Lab I Gr	aph Helj	
Row 1 2	Gender F Female	Response N	MyStatl Data Stat	Lab I Gr	aph Helj	var6
Row 1	Gender F	Response N	MyStatl Data Stat	Lab I Gr	aph Helj	
Row 1 2	Gender F Female	Response N 3	MyStatl Pata Stat var3 v	Lab I Gr	aph Helj	var6
Row 1 2 3	Gender F Female Options Two sample	Response 3 3 e T hypothesis	MyStatl Pata Stat /ar3 v s test:	Lab I Gr var4	aph Helj var5	var6
Row 1 2 3 4	Gender F Female Options Two sampl µ1 : Mean of	Response 3 3 e T hypothesis Response wher	MyStatl vata Stat var3 v s test: re Gender = "	Lab I Gr var4	aph Helj var5	var6
Row 1 2 3 4 5	Gender F Female Options Two sampl µ1 : Mean of µ2 : Mean of	Response 3 3 e T hypothesi s Response wher Response wher	MyStatl vata Stat var3 v s test: re Gender = " re Gender = "Fi	Lab I Gr var4	aph Helj var5	var6
Row 1 2 3 4 5 6	Gender F Female Image: Constraint of the second s	e T hypothesi Response wher Response wher Response wher reence betweer	MyStatl vata Stat var3 v s test: re Gender = " re Gender = "Fi	Lab I Gr var4	aph Helj var5	var6
Row 1 2 3 4 5 6 7	GenderFFemaleOptionsTwo sampl μ_1 : Mean of μ_2 : Mean of $\mu_1 - \mu_2$: Diff $H_0 : \mu_1 - \mu_2$	e T hypothesis Response wher Response wher rerence betweer = 0	MyStatl vata Stat var3 v s test: re Gender = " re Gender = "Fi	Lab I Gr var4	aph Helj var5	var6
Row 1 2 3 4 5 6 7 8	GenderFFemaleOptionsTwo sampl μ_1 : Mean of μ_2 : Mean of $\mu_1 - \mu_2$: Diff $H_0 : \mu_1 - \mu_2$ $H_0 : \mu_1 - \mu_2$ $H_A : \mu_1 - \mu_2$	Response 3 a T hypothesis Response wher Response wher rerence betweer = 0 ≠ 0	MyStatl vata Stat var3 v s test: re Gender = " re Gender = "Fi	Lab I Gr var4	aph Helj var5	var6
Row 1 2 3 4 5 6 7 8 9	GenderFFemaleOptionsTwo sampl μ_1 : Mean of μ_2 : Mean of $\mu_1 - \mu_2$: Diff $H_0 : \mu_1 - \mu_2$	Response 3 a T hypothesis Response wher Response wher rerence betweer = 0 ≠ 0	MyStatl vata Stat var3 v s test: re Gender = " re Gender = "Fi	Lab I Gr var4	aph Helj var5	var6
Row 1 2 3 4 5 6 7 8 9 9	$\begin{tabular}{ c c c c c } \hline Gender & F\\ \hline Female & & \\ \hline \hline Dptions & & \\ \hline \hline Uptions & & \\ \hline Uptions & & $	Response 3 a T hypothesis Response wher Response wher rerence betweer = 0 ≠ 0	MyStatl vata Stat var3 v s test: re Gender = " re Gender = "Fi	Lab I Gr var4	aph Helj var5	var6
Row 1 2 3 4 5 6 7 8 9 9 10 11	$\begin{tabular}{ c c c c }\hline Gender & F\\ \hline Female & & & \\\hline \hline Female & & & \\\hline \hline Potions & & & \\\hline \hline Uptions & & & \\\hline \hline Uptions & & & \\\hline \hline Uptions & & & \\\hline Uptions & & & \\\hline Uptions & & & \\\hline \hline Uptions & & & \\\hline Uption$	Response 3 Thypothesis Response where Response where rerence betweere = 0 ≠ 0 variances)	MyStatl vata Stat /ar3 v s test: re Gender = " re Gender = " n two means	Lab I Gr var4	aph Helj var5	var6
Row 1 2 3 4 5 6 7 8 9 10 11 12	$\begin{tabular}{ c c c c }\hline Gender & F\\ \hline Female & & & \\\hline \hline Female & & & \\\hline \hline Potions & & & \\\hline \hline Uptions & & & \\\hline \hline Uptions & & & \\\hline \hline Uptions & & & \\\hline Uptions & & & \\\hline Uptions & & & \\\hline \hline Uptions & & & \\\hline Uption$	Response 3 e T hypothesis 3 Response when 3 rence between 9 = 0 9 variances) 4 test results:	MyStatl vara Stat var3 v s test: re Gender = " re Gender="Fin two means Std. Err.	And	T-Stat	P-value

Find the test statistic for this hypothesis test.

.13 (Round to two decimal places as needed.)

Determine the P-value for this hypothesis test.

.896 (Round to three decimal places as needed.)

State the conclusion for this hypothesis test.

- O A. Do not reject H₀. There is sufficient evidence at the α = 0.01 level of significance to conclude that there is a difference in answers between males and females.
- In Do not reject H₀. There is not sufficient evidence at the α = 0.01 level of significance to conclude that there is a difference in answers between males and females.