MATH 161

THOMPSON

1)
$$f(x) = x^2 + 5$$
 $g(x) = \sqrt{x - 4}$ a. Find $f^og(x) = (\sqrt{x - 4})^2 + 5 = x + 1$ Domain $\{x \mid x \ge 4\}$ b. Find $g^of(x) = \sqrt{x^2 + 5 - 4}$ $= \sqrt{x^2 + 1}$ Domain all realsc. Find $f^of(x) = (x^2 + 5)^2 + 6 = x^4 + 10x^2 + 31$ Domain all realsd. Find $g^og(x) = \sqrt{\sqrt{x - 4} - 4}$ Domain $\{x \mid x \ge 20\}$ **Square 4 then add 4 to get 20

*ALWAYS SQUARE THE # THEN ADD IT TO ITSELF **EX** : $\sqrt{\sqrt{x-8}-8} \rightarrow 8^2 + 8 = 75$ THEN Domain {x | x ≥ 72}

) No

🍼 Yes

3) A function f has an inverse function. If the graph of f⁻¹ lies in quadrant I, in which quadrant does the graph of f lie? Quadrant I and III stay the same

💌 Quadrant I Quadrants II and IV switch

4) The function $f(x) = \frac{2x+7}{x+2}$ is one-to-one.

(a) Find its inverse and check your answer.

Find the inverse of
$$f(x) = \frac{2x+7}{x+2}$$

Switch x and y then solve for y. $x = \frac{2y+7}{y+2}$ $x(y+2) = 2y+7$
 $xy + 2x = 2y + 7$
 $xy - 2y = -2x + 7$
*factor out the y $y(x-2) = -2x + 7$
 $f^{-1} = \frac{-2x+7}{x-2}$

Domain of f (original) is $\{x | x \neq -2\}$ Range of f is $\{y | y \neq 2\}$ Domain and Range of function and its **inverse** are opposite, THEREFORE... Domain of f^1 is $\{x | x \neq 2\}$ Range of f^1 is $\{y | y \neq -2\}$

5) The function f(x) = x² + 2, x ≥ 0 is one-to-one.
(a) Find the inverse of f and check the answer.
(b) Find the domain and the range of f and f⁻¹.
(c) Graph f, f⁻¹, and y = x on the same coordinate axes.

 The graph of a one-to-one function is shown to the right. Draw the graph of the inverse function f⁻¹.

Switch x and y on the point

- 7) Find functions f and g so that $f \circ g = H$. H(x) = |7x + 9| g(x) goes into f(x) $f(x) = |-x|, g(x) = \frac{x - 9}{7}$ g(x) = |x|, g(x) = 7x + 9 G(x) = 1 + |x|, g(x) = 7x + 9 G(x) = 1 + |x| $G(x) = \frac{x - 9}{7}, g(x) = |x|$
- 8) The domain of a one-to-one function f is $[4,\infty)$, and its range is $[-2,\infty)$. State the domain and the range of f^{-1} .

. . .

Switch domain and range

What is the domain of f^{-1} ? The domain of f^{-1} is $[-2,\infty)$. (Type your answer in interval notation.)

What is the range of f⁻¹?

The range of f^{-1} is $[4,\infty)$. (Type your answer in interval notation.) 9) Given f(x) = 5x and $g(x) = 8x^2 + 6$, find the following expressions.

(a) $(f \circ g)(4)$ (b) $(g \circ f)(2)$ (c) $(f \circ f)(1)$ (d) $(g \circ g)(0)$

...

(a) $(f \circ g)(4) = 670$ (Simplify your answer.) $g(4)=134 \rightarrow f(134) = 670$ (b) $(g \circ f)(2) = 806$ (Simplify your answer.) $f(2)=10 \rightarrow g(10) = 806$ (c) $(f \circ f)(1) = 25$ (Simplify your answer.) $f(1)=5 \rightarrow f(5) = 25$ (d) $(g \circ g)(0) = 294$ (Simplify your answer.) $g(0)=6 \rightarrow g(6) = 294$

10) For $f(x) = x^2$ and $g(x) = x^2 + 1$, find the following composite functions and state the domain of each.

(a) f∘g	(b) g∘f	(C) fof	(d) g∘g
(x ² +1) ²	(x ²) ² +1	(x ²) ²	(x ² +1) ² +1
$x^{4}+2x^{2}+1$	x ⁴ +1	x ⁴	$x^{4}+2x^{2}+2$

♂B. The domain of g ∘ f is all real numbers. For all parts because they are parabolas

Domain and Range are all reals

Can't plot fractions on the inverse function find points on the **original line** and switch the coordinates for the **inverse line**.

Don't forget to plot the y = x line plot (0,0) and (1,1) to get the line

12) Find the inverse of $f(x) = \frac{8x}{x+3}$

Switch x and y then solve for y. $x = \frac{8y}{y+3}$ x(y+3) = 8yxy + 3x = 8yxy - 8y = -3x*factor out the y y(x-8) = -3x $f^{-1} = \frac{-3x}{x - 8}$

Domain of f is $\{x | x \neq -3\}$ Range of f is $\{y | y \neq 8\}$

Domain and Range of function and its inverse are opposite, THEREFORE...

Domain of f^1 is $\{x \mid x \neq 8\}$ Range of f^1 is $\{y \mid y \neq -3\}$

13) A function f has an inverse function. If the graph of f⁻¹ lies in quadrant IV, in which quadrant does the graph of f lie?

Quadrant II

Quadrant I and III stay the same Quadrants II and IV switch