COLLEGE ALGEBRA

MATH 161

Section 1.4 PART 2 Equations of Quadratic Type

USE U SUBSTITUTION FOR X

1)
$$x^4 - 10x^2 + 9 = 0$$
 factor and take half of 1st exponent
 $u = x^2$ $u^4 - 10u^2 + 9 = 0$
 $(u^2 - 9)(u^2 - 1) = 0$
 $(u+3)(u-3)(u-1)(u+1) = 0$ PUT X BACK IN FOR U
 $x = -3, -1, 1, 3$

2)
$$8x^4 - 2x^2 - 1 = 0$$
 SLIDE AND DIVIDE and take half of 1^{st} exponent
 $u = x^2$
 $8u^2 - 2u - 1 = 0$
 $u^2 - 2u - 8 = 0$
 $(u-4)(u+2)=0$ divide by 8
 $u = \frac{1}{2}, -\frac{1}{4}$ can't take square root of a negative number
 $x^2 = \frac{1}{2}$
 $x^2 = -\frac{1}{4}$
PUT X BACK IN FOR U
 $x = \sqrt{\frac{1}{2}} \rightarrow \sqrt{\frac{1}{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2}$

3)
$$x^{6} - 26x^{3} - 27 = 0$$
 $u = x^{3}$ $u^{6} - 26u - 27 = 0$ take half of 1st exponent
 $(u^{3} - 27)(u^{3} + 1) = 0$ set both equal to zero
 $u = -1,27$ PUT X BACK IN FOR U
 $x^{3} = -1$ $x^{3} = 27$
 $x = -1,3$

4)
$$(x + 2)^{2} + 9(x + 2) + 14 = 0$$
 u is always the middle term
 $u = x+2$ $u^{2}+9u+14=0$
 $(u+7)(u+2)=0$
 $u = -7,-2$ PUT X BACK IN FOR U
 $x+2 = -7$ and $x + 2 = -2$
 $x = -9, -4$

5)
$$(2x + 4)^{2} + 4(2x + 4) + 4 = 0$$
 u is always the middle term
 $u=2x+4$ $u^{2}+4u+4=0$
*if nothing is in front of the middle term just use u $(u+2)(u+2)=0$
 $u = -2$
 $2x+4 = -2$
 $x = -3$

6)
$$2(s+7)^2 - 13(s+7) = 7$$

 $u = \frac{s+7}{2u^2 - 13u - 7 = 0}$
 $u^2 - 13u - 14 = 0$
 $(u - 14)(u+1) = 0$
 $u = \frac{14}{2}$ may convert to 7, $\frac{-1}{2}$
 $s+7 = 7$ and $s+7 = \frac{-1}{2}$
 $x = 0, -7\frac{1}{2}$

7)

$$x - 12x\sqrt{x} = 0$$

(x = 12x\sqrt{x})²
x² = 144x³
x² - 144x³ = 0
x² (1-144x) = 0
x² = 0 and 1 - 144x = 0
x = 0, $\frac{1}{144}$

move one term to the right square both sides move back to left to factor

set each part equal to zero

8) $x + \sqrt{x} = 72$

9)

$$u=\sqrt{x}$$
 $u^{2}+u-72=0$
(u-8)(u+9)=0 $u = -9,8$
 $\sqrt{x} = -9$ $\sqrt{x} = 8$
no solution $x = 64$

$$4x^{1/2} - 9x^{1/4} + 3 = 0$$

$$u = x^{1/4} \quad 4u^{2} - 9u + 3 = 0 \quad Use \text{ quadratic equation because it doesn't factor}$$

$$\boxed{\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}} \quad \frac{9 \pm \sqrt{81 - 4 \cdot 4 \cdot 3}}{8} \quad u = \frac{9 \pm \sqrt{33}}{8}$$
be expective of 14 root is raised to the 4th power, put approximity like this

The opposite of ¼ root is raised to the 4th power, put answer in exactly like this

$$x = \left(\frac{9+\sqrt{33}^4}{8}\right), \left(\frac{9-\sqrt{33}^4}{8}\right)$$

10) $(\sqrt[4]{7x^2 - 6} = x)^4$ raise both sides to the 4th power

 $7x^2-6 = x^4$ move everything to the right side0

 x^4 -7 x^2 -6=0 FACTOR, half of 1st exponent (x^2 -6)(x^2 -1)=0 set both sides equal to zero x^2 -6=0 and x^2 -1=0 take square root of both $x = \sqrt{6}$, 1

* if $x = \sqrt{8}$ must reduce radical $\sqrt{2 \cdot 4} \rightarrow x = 2\sqrt{2}$

11)
$$x^{2} + 8x + 3\sqrt{x^{2} + 8x} = 18$$
 $u = \sqrt{x^{2} + 8x}$ $u^{2} + 3u - 18 = 0$
 $(u - 3)(u + 6) = 0$ $u = -6,3$
 $\sqrt{x^{2} + 8x} = -6$ $\sqrt{x^{2} + 8x} = 3$
can't have negative $x^{2} + 8x = 9$ move 9 to left to factor
 $x^{2} + 8x - 9 = 0$ FACTOR
 $(x+9)(x-1)=0$ set both sides equal to zero
 $x = -9.1$

12) $x^{-2} - 6x^{-1} + 8 = 0$ $u = x^{-1}$ $u^{2} - 6u + 8 = 0$ (u-2)(u-4) = 0 u = 2,4 $x^{-1} = 2$ $x^{-1} = 4$ negative exponent makes answer a fraction $x = \frac{1}{2}, \frac{1}{4}$

13) $5x^{2/3} - 34x^{1/3} - 7 = 0$ $u = x^{1/3}$ $5u^2 - 34u - 7 = 0$ USE SLIDE AND DIVIDE $u^2 - 34u - 35 = 0$ (u - 35)(u + 1) = 0 divide by 5 u = 7, -1/5 $x^{1/3} = 7$ $x^{1/3} = -1/5$

opposite of 1/3 exponent is cube so cube both answers

$$x = 343, -\frac{1}{125}$$

14)
$$\left(\frac{v}{v+1}\right)^2 + \frac{3v}{v+1} = 18$$
 $u = \frac{v}{v+1}$ the 3 is the coefficient in front of u
 $u^2 + 3u - 18 = 0$
 $(u+6)(u-3) = 0$ $u = -6,3$
 $\frac{v}{v+1} = -6$ $\frac{v}{v+1} = 3$
 $-6v - 6 = v$ $3v + 3 = v$
 $-6 = -7v$ $3 = -2v$
 $x = -\frac{6}{7}$ and $-\frac{3}{2}$