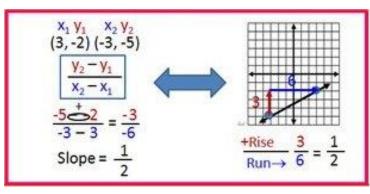
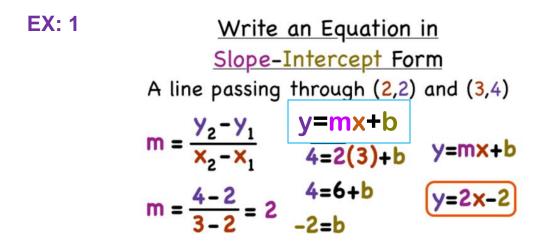
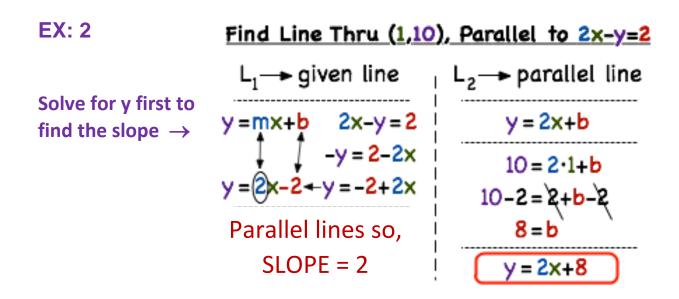

Equations of Lines

Parallel vs. Perpendicular

- Parallel Lines have the same slope
 - //
 - ex: <u>-2</u> and <u>-2</u>
- Perpendicular Lines have opposite/reciprocal slopes


90°


• . |


ex: <u>-2</u> and <u>1</u> 2

EX: 3

Find the equation of a line Through (1,10)
and Perpendicular to 2x-y=22x-y=2 $y=\frac{-1}{2}x+b$ (1,10)
 $10=\frac{-1}{2}(1)+b$ Perpendicular lines so,
flip 2 and change
the sign $b=\frac{21}{2}$ $y=\frac{-1}{2}x+\frac{21}{2}$

EX: 4

Find the equation of the line that has x-intercept of 4 and y-intercept of -3 Point-Slope Form $y-y_1 = m(x-x_1)$

Two points are (4,0) and (0,-3) $m = \frac{3}{4}$ y-0 = $\frac{3}{4}$ (x-4) y = $\frac{3}{4}$ x-3

EX: 5 Find the equation of the line that has undefined slope and passes through the point (5,-4)

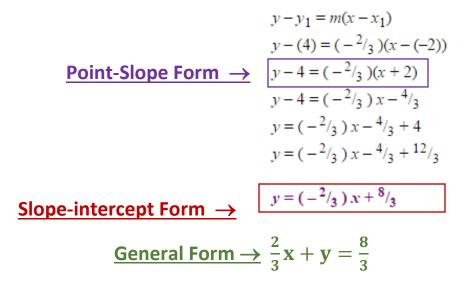
> undefined slope means vertical line and equation is x= x = 5

EX: 6 Find the equation of a horizontal line that passes through the point (1,-3) and put in general form.

horizontal line is a slope of zero and equation y= y = -3

EX: 7 Find the equation of the line perpendicular to the line x = 5 and contains the point (-4,6)

> The line x= is vertical and has undefined slope; perpendicular to that is slope of zero and line y= y = 6


EX: 8

Find the equation of the line that passes through the points (-2, 4) and (1, 2). Point-Slope Form $y-y_1 = m(x-x_1)$

Given two points, I can always find the slope:

$$m = \frac{(4) - (2)}{(-2) - (1)} = \frac{2}{-3} = -\frac{2}{3}$$

Then I can use either point as my (x_1, y_1) , along with this slope Ive just calculated, and plug in to the point-slope form. Using (-2, 4) as the (x_1, y_1) , I get:

