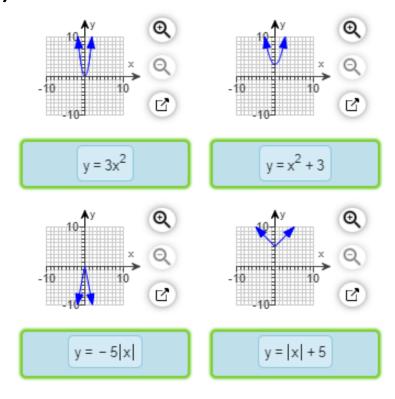
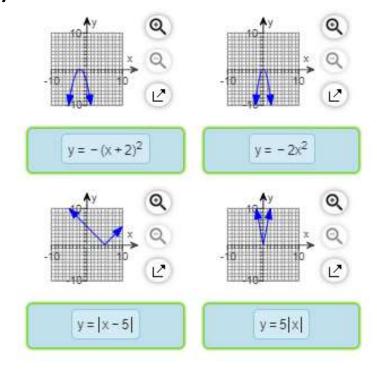


- Suppose that the graph of a function f is known. Then the graph of y = f(x 2) may be obtained by a horizontal shift of the graph of f to the right a distance of 2 units.
- 2) Suppose that the graph of a function f is known. Then the graph of y = f(-x) may be obtained by a reflection about the y -axis of the graph of the function y = f(x).
- 3) Which of the following functions has a graph that is the graph of $y = \sqrt{x}$ shifted up 5 units?

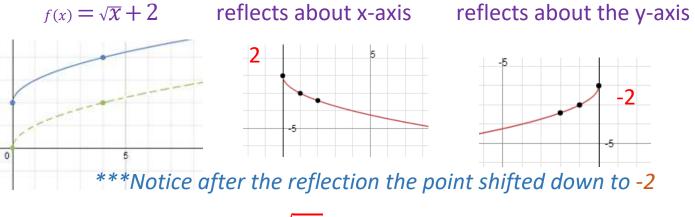

Choose the correct answer below.

-) y = √x 5


4) Drag the function given above into the appropriate area below to match the graph.

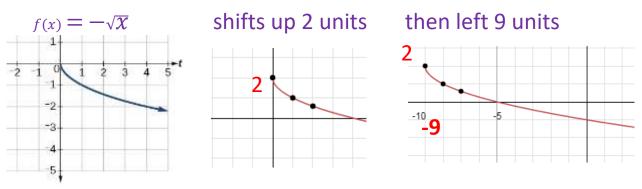
5 Drag the function given above into the appropriate area below to match the graph.

6) Drag the function given above into the appropriate area below to match the graph.

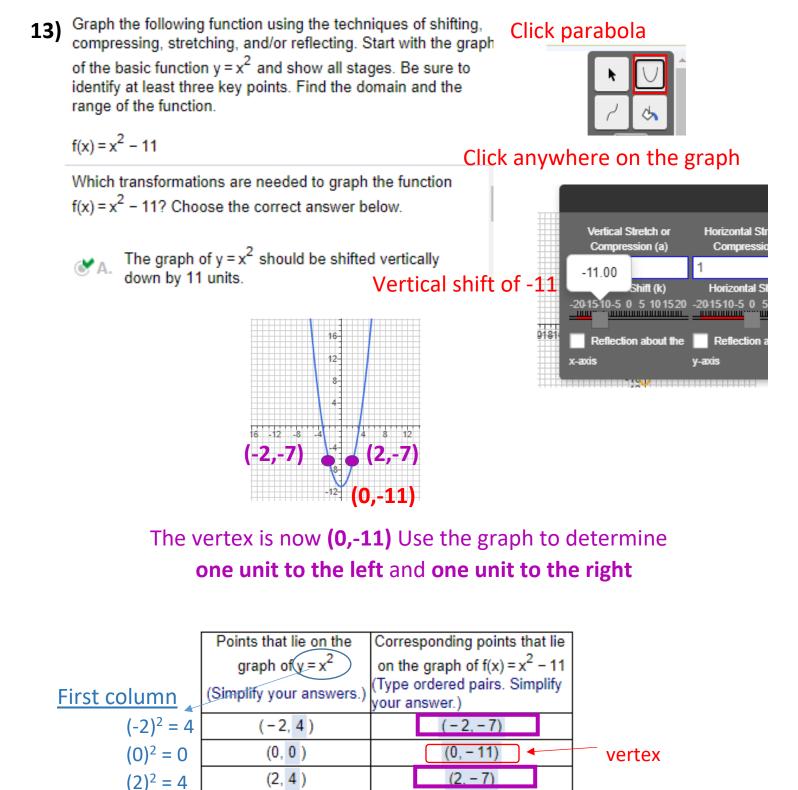

- **7)** Write the function whose graph is the graph of $y = x^3$, but is shifted to the left $y = (x+8)^3$ 8 units.
- 8) Write the function whose graph is the graph of y = |x|, but is shifted up 1 y = |x| + 1unit.
- 9) Write the function whose graph is the graph of $y = 2\sqrt{x}$ but is reflected about the y-axis.

The function is $y = 2\sqrt{-x}$. (Type an exact answer, using radicals as needed.)

Write the function whose graph is the graph of $y = \sqrt{x}$, but is horizontally stretched by a factor of 7. 10)

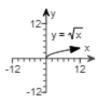


- 11) Find the function that is finally graphed after the following transformations are applied to the graph of y = √x in the order listed.
 - (1) Shift up 2 units
 - (2) Reflect about the x-axis
 - (3) Reflect about the y-axis


 $y = -\sqrt{-x} - 2$

- 12) Find the function that is finally graphed after the following transformations are applied to the graph of $y = \sqrt{x}$ in the order listed.
 - (1) Reflect about the x axis
 - (2) Shift up 2 units
 - (3) Shift left 9 units

***Notice if the reflection is first does not change the positioning


$$y = -\sqrt{x+9} + 2$$

The domain of f(x) is $(-\infty,\infty)$. (x) move your pencil from left to right on the graph (Type your answer in interval notation.)

The range of f(x) is $[-11,\infty)$. (y)move your pencil from bottom to top on the graph (Type your answer in interval notation.)

14) Graph the following function using the techniques of shifting, compressing, stretching, and/or reflecting. Start with the graph of the basic function shown to the right. Find the domain and range of the function.

Find the domain of h(x).

 $h(x) = \sqrt{x-4}$

[4,∞) (x) (Type your answer in interval notation.) both always to ∞ on $y = \sqrt{x}$

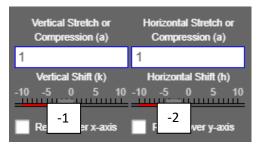
Find the range of h(x).

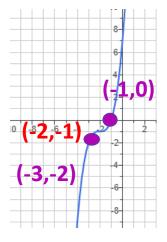
 $[0,\infty)$ (y) (Type your answer in interval notation.)

15) Graph the following function using the techniques of shifting, compressing, stretching, and/or reflecting.

> Start with the graph of the basic function $y = x^3$ and show all stages. Be sure to identify at least three key points. Find the domain and the range of the function

 $f(x) = (x+2)^3 - 1$


Which transformations are needed to graph the function $f(x) = (x + 2)^3 - 1$? Choose the correct answer below.


The graph of y = x³ should be horizontally A. shifted to the left by 2 units and shifted vertically down by 1 unit.

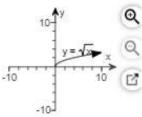
Graph is cube root

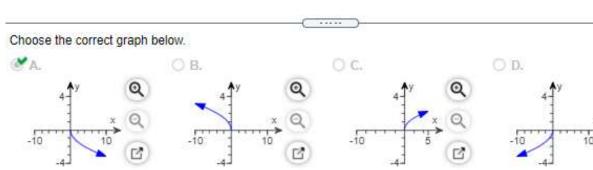
► ∪ / &

Click anywhere on the graph

The vertex is now (-2,1) from the shifts. Use the graph/to determine one unit to the left and one unit to the right

$(-1)^{3} = -1$ $(0)^{3} = 0$ $(0, 0)$ $(-1, -1)$ $(-3, -2)$ $(-3, -2)$ $(-1, -1)$ $(-3, -2)$ $(-1, -1)$ $(-2, -1)$ $(-1, -1)$ $(-3, -2)$ $(-2, -1)$ $(-1, -1)$	(1)3 - 1	graph of $y = x^3$	Corresponding points that lie on the graph of $f(x) = (x + 2)^3 - 1$ (Type ordered pairs. Simplify your answer.)	
(0, 0) $(-2, -1)$	X X	(-1, -1)	(-3,-2)	VEDTEV
	$(0)^{3} = 0$ $(1)^{3} = 1$	(0, 0)	(-2, -1)	VENIEA

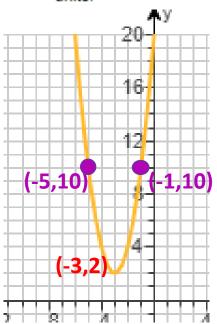

No restrictions on either: The domain of f(x) is $(-\infty,\infty)$.

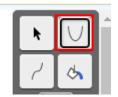

 $f(x) = -\sqrt{x}$

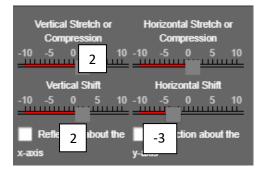
(Type your answer in interval notation.)

The range of f(x) is $(-\infty,\infty)$. (Type your answer in interval notation.)

16) Graph the following function using the techniques of shifting, compressing, stretching, and/or reflecting. Start with the graph of the basic function shown to the right. Find the domain and range of the function.




The domain of $y = -\sqrt{x}$ is $[0,\infty)$. (Type your answer in interval notation.)


The range of $y = -\sqrt{x}$ is $(-\infty, 0]$. (Type your answer in interval notation.) Graph the following function using the techniques of shifting, compressing, stretching, and/or reflecting. Start with the graph of the basic function $y = x^2$ and show all stages. Be sure to identify at least three key points. Find the domain and the range of the function.

 $f(x) = 2(x+3)^2 + 2$

The graph of $y = x^2$ should be horizontally shifted to the left by 3 units, vertically stretched by a factor of 2, and shifted vertically up by 2 units.

The vertex is now (-3,2). Use the graph to determine <u>TWO</u> unit to the left and <u>TWO</u> unit to the right of the vertex

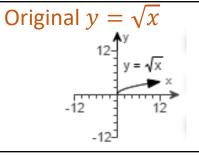
	graph of $y = x^2$		tesponding points the en the graph of $f(x) = 2(x + 3)^2 + 2$		
(-2) ² = 4	(Simplify your answers.)	(Ту	pe ordered pairs. Sim your answer.)	nplify	
· · /	(-2,4)		(-5,10)		
$(0)^2 = 0$	(0, 0)		(-3,2)		VERTEX
$(2)^2 = 4$	(2, 4)		(-1,10)		

The domain of f(x) is $(-\infty,\infty)$.

(Type your answer in interval notation.)

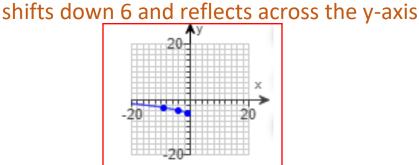
The range of f(x) is $[2,\infty)$. (Type your answer in interval notation.)

17)


18) Graph the following function using the techniques of shifting, compressing, stretching, and/or reflecting. Start with the graph of the basic function $y = \sqrt{x}$ and show all stages. Be sure to show at least three key points. Find the domain and the range of the function.

 $h(x) = \sqrt{-x} - 6$

Which transformations are needed to graph the function $h(x) = \sqrt{-x} - 6$? Choose the correct answer below.

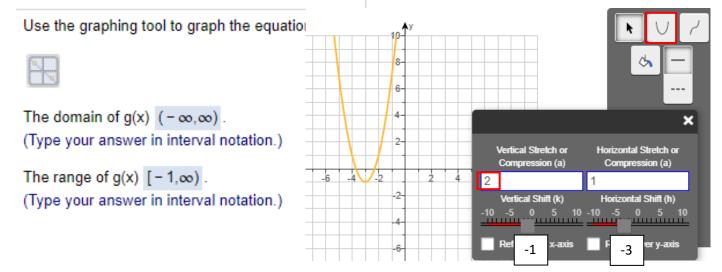

The graph of $y = \sqrt{x}$ should be vertically shifted down by 6 units, reflected about the y-axis.

Choose the correct graph for $h(x) = \sqrt{-x} - 6$ below.

The domain of h(x) is $(-\infty, 0]$. (Type your answer in interval notation.)

The range of h(x) is $[-6,\infty)$. (Type your answer in interval notation.)

From left to right, ∞ to 0 including 0


From bottom to top, includes -6 to ∞

19) Suppose that the x-intercepts of the graph of y = f(x) are 6 and 9.

(a) What are the x-intercepts of the graph of $y = f(x + 7)$?	
The x-intercepts of the graph of $y = f(x + 7)$ are $-1,2$. (Use a comma to separate answers as needed.)	Left 7 means subtract 7
(b) What are the x-intercepts of the graph of $y = f(x - 4)$?	Right means add 4
The x-intercepts of the graph of $y = f(x - 4)$ are 10,13. (Use a comma to separate answers as needed.)	
(c) What are the x-intercepts of the graph of y = 8f(x)?	Vertical stretch doesn't change x-intercepts
The x-intercepts of the graph of $y = 8f(x)$ are $6,9$.	because it only stretches
(Use a comma to separate answers as needed.)	eflects across the x-axis
(d) What are the x-intercepts of the graph of y = f(- x)?	Changes sign of intercepts
The x-intercepts of the graph of $y = f(-x)$ are $-6, -9$. (Use a comma to separate answers as needed.)	

20) Starting with the graph of a basic function, graph the following function using the techniques of shifting, compressing, stretching, and/or reflecting. Find the domain and range of the function.

$$g(x) = 2(x+3)^2 - 1$$

21) Graph the following function using the techniques of shifting, compressing, stretching, and/or reflecting. Start with the graph of the basic function shown to the right. Find the domain and range of the function.

 $h(x) = \sqrt{x+4}$

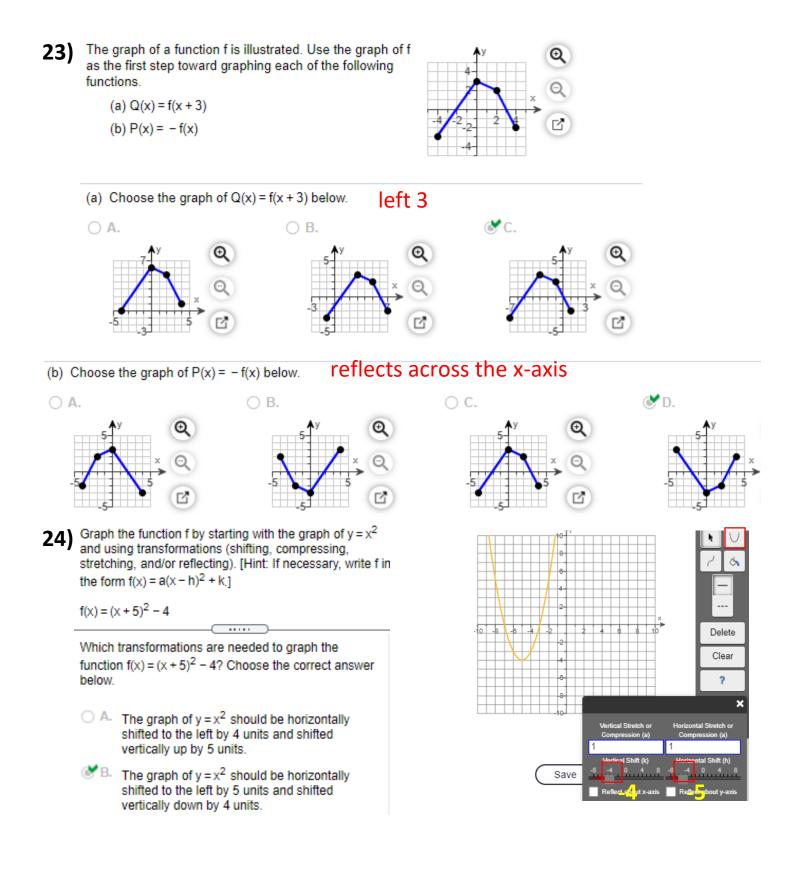
shifts left 4 units

Find the domain of h(x).

 $[-4,\infty)$ left to right, starts at -4 (bracket) to ∞ (always parenthesis) (Type your answer in interval notation.)

-12

12


-12-

Find the range of h(x).

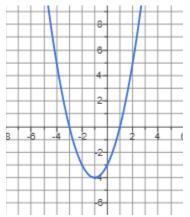
 $[0,\infty)$ bottom to top, starts at 0 (bracket) to ∞ (always parenthesis) (Type your answer in interval notation.)

22) Find the domain and range of the function.

 $f(x) = \sqrt{x-6} + 8$ Domain is inside the absolute value $[6,\infty)$ *change sign Range is outside the absolute value $[8,\infty)$

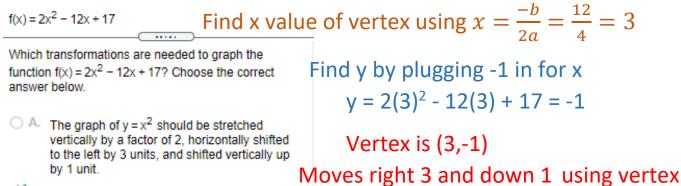
25) Graph the function f by starting with the graph of y = x² and using transformations (shifting, compressing, stretching, and/or reflecting). [Hint: If necessary, write f in the form f(x) = a(x - h)² + k.]

f(x)=x²+2x-3 Find x value of vertex using $x = \frac{-b}{2a} = \frac{-2}{2} = -1$

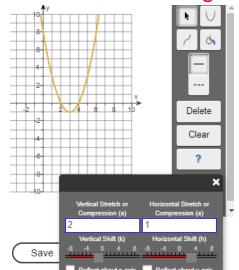

Which transformations are needed to graph the function $f(x) = x^2 + 2x - 3$? Choose the correct answer below.

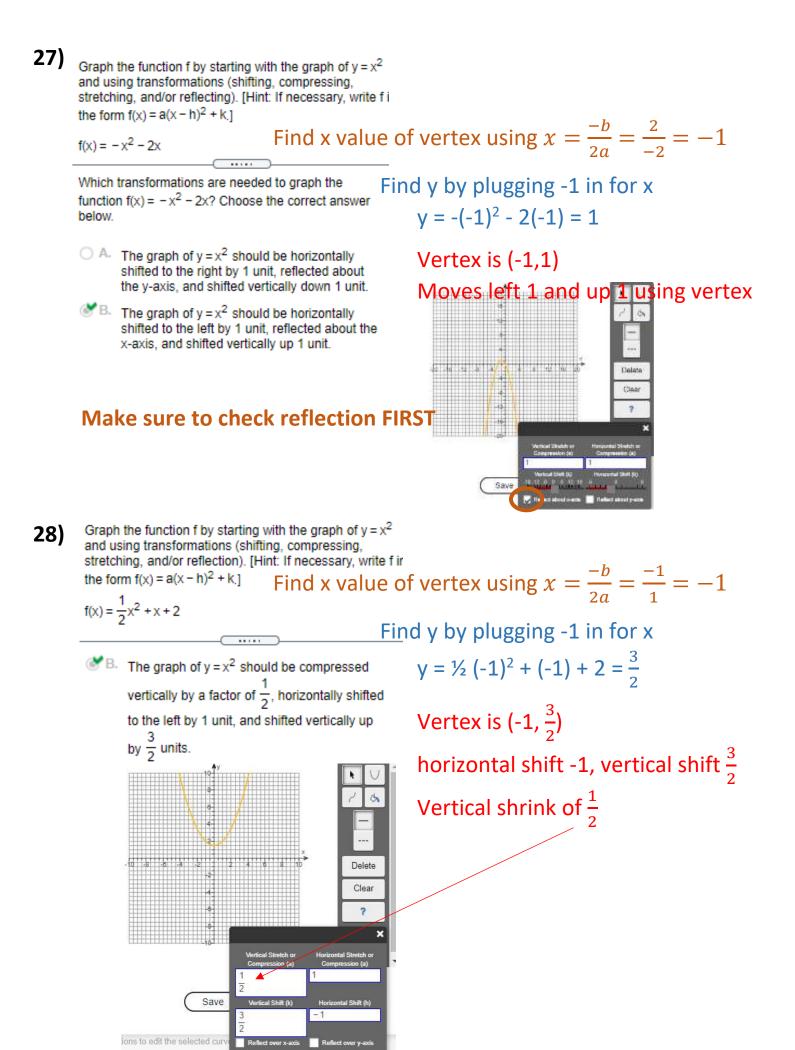
- A. The graph of y = x² should be horizontally shifted to the right by 1 unit and shifted vertically up by 4 units.
- The graph of y = x² should be horizontally shifted to the left by 1 unit and shifted vertically down by 4 units.

Find y by plugging -1 in for x y = $(-1)^2 + 2(-1) - 3 = -4$


Vertex is (-1,-4)

Moves left 1 and down 4 using vertex

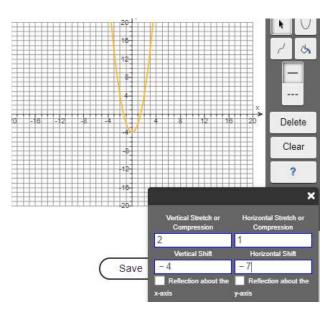



Vertical shift is -4 Horizontal shift is -1

26) Graph the function f by starting with the graph of y = x² and using transformations (shifting, compressing, stretching, and/or reflecting). [Hint: If necessary, write f in the form f(x) = a(x - h)² + k.]

B. The graph of y = x² should be stretched vertically by a factor of 2, horizontally shifted to the right by 3 units, and shifted vertically down by 1 unit.

29) Graph the following function by starting with a function from the library of functions and then combining shifting, compressing, stretching, and/or reflecting techniques.


 $f(x) = 2(x+7)^2 - 4$

the given function using a function from the library of functions.

A. Stretch the graph horizontally by a factor of 2.

B. Reflect the graph about the y-axis.

- C. Shift the graph 7 units to the right.
- D. Stretch the graph vertically by a factor of 2.
- E. Shift the graph 7 units to the left.
- F. Shift the graph 4 units down.
- G. Reflect the graph about the x-axis.
- H. Shift the graph 4 units up.

