6.3 Exponential Function

MATH 161 THOMPSON

Evaluate the exponential expression.

$$(-4)^2$$
 Make sure to put $(-4)^2$ is calculator = 16

Simplify the given expression.

 $9^{-2} = \frac{1}{81}$ calculator: 9^-2 then 2nd PRB

3) Simplify the given expression.

 $7^{-4} \cdot 7^3$ 7^-4 times 7^3 2nd PRB $7^{-4} \cdot 7^3 = \frac{1}{7}$ (Type an integer or a simplified fraction.)

 $(4^{-1})^{-3}$ $(4^{-1})^{-3} = 64$ (Type an integer or a simplified fraction.)

5) Simplify the given expression.

√49

6)

Simplify the given expression.

$$\sqrt{(-8)^2}$$

 $\sqrt{(-8)^2} = 8$

7) Find the value of the given expression if x = 7 and y = -3.

 $5xy^{-1} \qquad \frac{5(7)}{-3}$ negative exponent makes a fraction $5xy^{-1} = -\frac{35}{3}$ (Simplify your answer.)

8) Find the value of the expression if
$$x = 3$$
 and $y = -4$.

$$x^{2} + y^{2}$$
 (3)² + (-4)²
 $x^{2} + y^{2} = 25$ (Simplify your answer.)

$$\frac{(xy)^2}{(xy)^2} = \frac{(4 \cdot -1)^2}{(1 - 1)^2}$$

10) Find the value of the expression if x = 3.

$$\sqrt{x^2}$$
 $\sqrt{(-3)^2}$
 $\sqrt{x^2} = 3$ (Simplify your answer.)

11) Find the value of the expression if x = 6 and y = -7.

$$\frac{\sqrt{x^2 + y^2}}{\sqrt{6^2 + (-7)^2}}$$

$$\sqrt{x^2 + y^2} = \sqrt{85}$$

12) Find the value of the expression if x = 8 and y = -1.

 x^{y} Negative exponent makes a fraction $x^{y} = \frac{1}{8}$ (Simplify your answer.)

- 13) $4^2 = 16$ (Type an integer or a simplified fraction.)
 - $8^{\frac{2}{3}} = 4$ (Type an integer or a simplified fraction.)

 $3^{-3} = \frac{1}{27}$ (Type an integer or a simplified fraction.)

The exponential function f(x) = a, a>0, $a\neq 1$, has <u>no x-intercept</u> because it is above the x-axis.

Decide whether the following statement is true or false.

14)

15)

The domain of the exponential function $f(x) = a^{x}$, a > 0, $a \neq 1$, is the set of all real numbers.

Choose the correct answer below.

- False
- 💕 True

Decide whether the following statement is true or false.

The graph of the exponential function $f(x) = a^{X}$, a > 0, $a \neq 1$, has no x-intercept.

Choose the correct answer below.

💕 True

False

16) Which of the following is the range of the exponential function $f(x) = a^x$, a > 0 and $a \neq 1$?

Choose the correct answer below.

- $(-\infty,\infty)$ (⊘,∞) ○ (-∞,0)
- \bigcirc (- ∞ ,0)U(0, ∞)

17) Determine the function is linear, exponential, or neither?

To check linear: check slope on two set of points

$\frac{1-11}{1} = \frac{-10}{1} = 10$	X	f(x)
0-1 -1	-1	1/11
11-121 -110 110 -	0	1
$\frac{1}{1-2} = \frac{1}{-1} = 110$ ho	1	11
	2	121
check exponential:	3	1331

To check exponential:

 $\frac{f(x+1)}{f(x)} = a \text{ where } f(x) = Na^x \text{ and } f(x) = N$

$$\frac{f(0)}{f(-1)} = \frac{1}{\frac{1}{1}} = 11$$

$$\frac{f(1)}{f(0)} = \frac{11}{1} = 11 \quad \text{yes, therefore: } f(0) = 1 \text{ then } f(x) = 11^x$$

*HINT when x = -1 and y is a fraction and x = 0 is always 1 then check x = 1 for y = the same number as bottom of the first fraction.

18) Determine the function is linear, exponential, or neither?

To check linear: check slope on two set of points

13-156 -143	X	f(x)
$\frac{10^{-100}}{0} = \frac{110}{-1} = 143$	-1	13/12
	0	13
	1	156
	2	1872
	3	22464

$$\frac{156 - 1872}{1 - 2} = \frac{-1716}{-1} = 1716$$
 no

To check exponential:

$$\frac{f(x+1)}{f(x)} = a \text{ where } f(x) = Na^x \text{ and } f(x) = N$$
$$\frac{f(0)}{f(-1)} = \frac{13}{13/12} = 12$$
$$\frac{f(1)}{f(0)} = \frac{165}{13} = 12 \text{ yes, therefore: } f(0) = 13 \text{ then } f(x)=13\cdot1$$

*HINT when x = -1 and y is a fraction and x = 0 is always 1 then check x = 1 for y = the same number as bottom of the first fraction. The top number if not 1 goes in front of the exponential function. y = N/a

19) Determine whether the function given by the table is linear, exponential, or neither. If the function is linear, find a linear function that models the data; if it is exponential, find an exponential function that models the data.

x	f(x)
- 1	2
0	5
1	8
2	11
3	14

2[×]

Select the correct choice below and fill in any answer boxes within your choice.

M. The function is linear. A linear function that models the data is f(x) = 3x + 5. (Simplify your answer.)

To check linear: check slope on two set of points

$$\frac{5-2}{0+1} = 3$$

$$\frac{8-5}{1-0} = 3 \text{ linear} \qquad 5 = 3(0) + b \text{ then be} = 5$$

20) Match the graph to a function:

*Reflects across the y-axis and shifts right 1

Plug in x=0 then y = 5 and x = 1 then y = 1 \underline{G}

21) Match the graph to one of the following functions.

Α.	y = 7 [×]	B. y=7 ^{-x}
C.	y = -7 ^x	D. $y = -7^{-x}$
E.	y = 7 [×] – 1	F. $y = 7^{x-1}$
G.	$v = 7^{1-x}$	H. $v = 1 - 7^{x}$

*Reflects across the x-axis and shifts up 1

Plug in x=0 then y = 0 and x = 1 then y = $-6 \frac{H}{H}$

22) Match the graph to one of the following functions.

A.
$$y = 7^x$$
B. $y = 7^{-x}$ C. $y = -7^x$ D. $y = -7^{-x}$ E. $y = 7^x - 1$ F. $y = 7^{x-1}$ G. $y = 7^{1-x}$ H. $y = 1 - 7^x$

*Reflects across the x-axis

Plug in x=0 then y = -1 and x = 1 then y = -7 <u>C</u>

23) Match the graph to one of the following functions.

A.
$$y = 6^{x}$$

B. $y = 6^{-x}$
C. $y = -6^{x}$
D. $y = -6^{-x}$
E. $y = 6^{x} - 1$
F. $y = 6^{x-1}$
G. $y = 6^{1-x}$
H. $y = 1 - 6^{x}$

*Shifts down 1

Plug in x=0 then y = 0 and x = 1 then y = 5 \underline{E}

24) Use transformations to graph the function. Determine the domain, range, horizontal asymptote, and y-intercept of the function.

$$f(x) = 6^{x} + 3$$
 shifts up 3

What is the domain of $f(x) = 6^{x} + 3?$

 $(-\infty,\infty)$

(Type your answer in interval notation.)

What is the range of $f(x) = 6^{x} + 3?$

(3,∞)

(Type your answer in interval notation.)

Vertical shift up 3

The function has one horizontal asymptote, y=3. Up 3 (Type an equation.)

What is the y-intercept of $f(x) = 6^{x} + 3$?

4 (Type an integer or a simplified fraction.) Plug 0 in for x 25) Use transformations to graph the function. Determine its domain, range, and horizontal asymptote.

$$f(x) = 5^x - 4$$
 Down 4

What is the domain of $f(x) = 5^{x} - 4$?

(− ∞,∞) (Type your answer in interval notation.)

What is the range of $f(x) = 5^{x} - 4$?

 $(-4,\infty)$ (Type your answer in interval notation.) Vertical down up 4

 $f(x) = 5^{x-1}$ Right 1

What is the domain of $f(x) = 5^{x-1}$?

 $(-\infty,\infty)$

(Type your answer in interval notation.)

What is the range of $f(x) = 5^{x-1}$?

(0,∞**)**

(Type your answer in interval notation.)

What line is the horizontal asymptote of $f(x) = 5^x - 4$? Down 4 y = -4 (Type an equation.)

The function has one horizontal asymptote, y = 0.

What is the y-intercept of $f(x) = 5^{x-1}$?

 $\frac{1}{5}$ Plug 0 in for x 5⁻¹

27) Use transformations to graph the function. Determine the domain, range, horizontal asymptote, and y-intercept of the function.

$$f(x) = 6 \cdot \left(\frac{1}{4}\right)^x$$
 Vertical stretch
of 6

What is the domain of
$$f(x) = 6 \cdot \left(\frac{1}{4}\right)^x$$
?

(-∞,∞)

(Type your answer in interval notation.)

What is the range of $f(x) = 6 \cdot \left(\frac{1}{4}\right)^{x}$?

(0,∞)

28) Use transformations to graph the function. Determine the domain, range, horizontal asymptote, and y-intercept of the function.

> f(x)=3^{-x}-2 Reflects across y down 2

What is the domain of $f(x) = 3^{-x} - 2?$

(−∞,∞)

(Type your answer in interval notation.)

What is the range of $f(x) = 3^{-x} - 2?$

(−2,∞)

(Type your answer in interval notation.)

Vertical down up 2

The function has one horizontal asymptote, y = 0.

What is the y-intercept of $f(x) = 6 \cdot \left(\frac{1}{4}\right)^{x}$?

6 (Type an integer or a simplified fraction.) Plug 0 in for x

The function has one horizontal asymptote, y = -2. (Type an equation.)

What is the y-intercept of $f(x) = 3^{-x} - 2?$

-1 (Type an integer or a simplified fraction.) Plug 0 in for x 29) Use transformations to graph the function. Determine the domain, range, horizontal asymptote, and y-intercept of the function.

> $f(x) = 1 + 3^{x-2} \rightarrow f(x) = 3^{x-2} + 1$ Right 2, up 1

What is the domain of $f(x) = 1 + 3^{x-2}$?

 $(-\infty,\infty)$

(Type your answer in interval notation.)

What is the range of $f(x) = 1 + 3^{x-2}$?

(1,∞)

```
Vertical shift up 1
```


The function has one horizontal asymptote, y = 1. Up 1 (Type an equation.)

What is the y-intercept of $f(x) = 1 + 3^{x-2}$?

 $\frac{10}{9}$ (Type an integer or a simplified fraction.) $1+3^{-2} = 1+\frac{1}{9}$

Begin with the graph of y = e^x and use transformations to graph the following function. Determine the domain, range, and horizontal asymptote of the function.

 $f(x) = 6 e^{-x}$

Reflects across the y

vertical stretch of 6

The domain of $f(x) = 6 e^{-x}$ is $(-\infty, \infty)$. (Type your answer in interval notation.)

The range of $f(x) = 6 e^{-x}$ is $(0, \infty)$. (Type your answer in interval notation.)

The horizontal asymptote of $f(x) = 6 e^{-x}$ is y = 0.

31) Solve $4^{-x} = 256$ get the same base $4^{-x} = 4^4$ set exponents equal and solve -x = 4 x = -4

32) Solve
$$\left(\frac{3}{5}\right)^{x} = \frac{27}{125}$$
 get the same base
 $\left(\frac{3}{5}\right)^{x} = \left(\frac{3}{5}\right)^{3}$
set exponents equal $x = 3$

33) Solve
$$5^{4x+1} = 25$$
 get the same base
 $5^{4x+1} = 5^2$
set exponents equal and solve $4x + 1 = 2$
 $4x = 1$ $x = \frac{1}{4}$

34) Solve
$$8^{x^2-5} = 64^{2x}$$
 get the same base $8^{x^2-5} = 8^{4x}$

set exponents equal and solve
$$x^2 - 5 = 4x$$

 $x^2 - 4x - 5 = 0$
 $(x-5)(x+1)$ $x = -1,5$

35) Solve $49^x \cdot 7^{x^2} = 2401^2$ get the same base $7^{2x} \cdot 7^{x^2} = 7^8$

set exponents equal and solve $2x+x^2 = 8$ $x^2 + 2x - 8 = 0$ (x-2)(x+4) x = -4,236) Solve $e^x = e^{3x+18}$

set exponents equal and solve x = 3x + 18-2x = 18

x = -9

37) Solve $e^{x^2} = e^{8x} \cdot \frac{1}{e^{15}}$ get the same base $e^{x^2} = e^{8x} \cdot e^{-15}$ set exponents equal and solve $x^2 = 8x-15$ $x^2 - 8x + 15 = 0$ (x-5)(x-3) x = 3,5

38) If $6^x = 7$ then $6^{-2x} = ?$

*The -2 means to make it a fraction and square it therefore, $X = \frac{1}{49}$

39) Give the function of the graph:

f(x) = 4^x If I plug 1 in for x, y = 4

If x = 0 and y = -1means negative in front If x = 1 and y = 4

means 4 is the root

41) Suppose that $g(x) = 2^{x} + 2$

a) What is g(-1)? When x = -1, what is the point on the graph?

$$2^{-1} + 2 = \frac{5}{2}$$
 (-1, $\frac{5}{2}$)

b) If g(x) = 10, what is x? Give point on the graph.

 $2^{x} + 2 = 10$ $2^{x} = 8$ $2^{x} = 2^{3}$ x = 3 (3,10)

42) If a single pane of glass obliterates 9% of the light passing through it, then the percent p of the light that passes through n successive panes is given approximately by the following function: $p(h) = 100(0.91)^n$

(a) What percent of light will pass through 40 panes? p(5) = 2% $100(0.99)^5$

(b) What percent of light will pass through 50panes? p(10) = 1% 100(0.99)⁵⁰ 43) The percentage of patients P who have survived t years after initial diagnosis of a certain disease is modeled by the function: P(t) = $100(0.5)^{t}$

- (a) According to the model, 50% of the patients survive 1 year after initial diagnosis. *Plug 1 in for t*
- (b) According to the model, 12.5% of the patients survive 3 year after initial diagnosis. *Plug 3 in for t*
- (c) As each year passes 50% of the previous year's survivors have survived.

44) D(h) = 9e^{-0.55h} can be used to find the number of milligrams D of a drug that is in a patient's bloodstream h hours after the drug has been administered. How many milligrams will be present after 1 hour? After 11 hours?

```
9e^{-0.55(1)} = 5.19 9e^{-0.55(11)} = 0.021
```